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A new synthetic route to (+)-pancratistatin was devised utilizing 5-silyl styrene as a dienophile in the cycloaddition with 3,5-dibromo-2-pyrone.

The TMS group incorporated in the cycloadduct permitted a facile elimination process for the eventual installation of the C(1)—OH function.
Subsequent transformations including Curtius rearrangement and Bischler—Napieralski reactions completed the total synthesis of (+)-

pancratistatin.

First isolated by Pettit and co-workers in 1984 from the
bulbs of Hawaiian Hymenocallis littoralis (originally Pan-
cratium litterale),' pancratistatin 1 has attracted tremen-
dous attention over the past decades due to the highly
potent selective anticancer activities.”> The molecular basis
of anticarcinogenesis has been attributed to its disruption
of peptide biosynthesis, based on the structural similarity
to the close relative narciclasine 2 (Figure 1). However,
further clinical development is hampered by its low bio-
availability as well as poor water solubility.
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Figure 1. Selected examples of natural isocarbostyryls.

Despite the moderate molecular size, pancratistatin is a
quite challenging synthetic target because of its structural
complexity that includes six contiguous stereogenic centers
on ring C, five substituents on the aromatic A ring, and
highly strained B-ring lactam. Since the first total synthesis
reported by Danishefsky and Lee in 1989,% a number of
elegant synthetic strategies and routes have been devised
and resulted in eight completed total syntheses.*

As a part of our ongoing study exploring the utility of
3,5-dibromo-2-pyrone in target-oriented synthesis,” we
have reported the first total synthesis of (£)-trans-
dihydronarciclasine 3, by using the highly endo-selective



Diels—Alder cycloaddition reaction of 3,5-dibromo-2-pyr-
one with a styrene type dienophile as a key reaction. We
have further envisioned that the same synthetic strategy
could also be effective for pancratistatin, as it differs only
with the C(1)—OH function. Reported herein is the suc-
cessful extension of our 2-pyrone strategy for the synthesis
of (f)-pancratistatin, which yet required substantial ex-
perimentations in spite of the structural similarity.

Scheme 1. Retrosynthesis of Pancratistatin
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Notable features of our synthetic plan include (1) in-
stallation of the key C(1)—OH group via epoxidation and
the hydrolysis reaction of cyclohexene 9 (9 — 8, Scheme 1)
and (2) the use of (E)-B-silyl styrene 5a as a dienophile
partner in the cycloaddition with 3,5-dibromo-2-pyrone 6.
The resultant S-hydroxy silane 10 would be readily elimi-
nated to afford alkene 9.

Initially we planned to make cyclohexene 9 from mesy-
late 11 readily accessed from the corresponding alcohol
intermediate employed in our synthesis of trans-
dihydronarciclasine.” However, all the attempts to bring
about the elimination reaction into 6 were not successful
(Scheme 2). Epoxide 13 was obtained instead as a major
product in most cases, presumably via the process invol-
ving deprotonation, elimination, and epoxide formation.
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Scheme 2. Elimination Reaction of Mesylate 11
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Consequently, a new synthetic route was elaborated, this
time, to go through S-hydroxy silane 10, making use of its
facile elimination process (vide supra, Scheme 1). The
required (E)-f3-silyl styrene Sa was prepared from alkyne
14 by following the route shown in Scheme 3.® Conversion
into TMS-alkyne 15 followed by a hydroalumination
reaction provided f-silyl styrene 5 as a mixture of E- and
Z-isomers. As demonstrated in the literature,’ the stereo-
chemical outcome of the hydroalumination is highly sol-
vent-dependent. In toluene, the reaction afforded exclu-
sively Z-isomer 5b in 67% yield. The reaction in pentane
gave the best results, with respect to the E/Z ratio (5:1) and
product yield (78% total yield). Despite the presence of
the Z-isomer (~17%), the ensuing cycloaddition with 3,
S-dibromo-2-pyrone gave S-endo-6-exo-trans-bicyclolac-
tone 16a only, with no trace of either 5-endo-6-endo-cis-
or 5-exo-6-exo-cis-bicyclolactone. Therefore, the sterco-
chemistry of f-silyl styrene was inconsequential in this
case. Apparently, the cycloaddition reaction proceeded in
a stepwise rather than concerted manner.® The exclusive
formation of 5-endo-6-exo-trans-bicyclolactone 16a from
the cycloaddition with pure (Z)-f3-silyl styrene 5b further
corroborates its stepwise nature. In addition, (Z)-S-silyl
styrene Sb used in excess (1.3 equiv) in the cycloaddition
was found to be isomerized into (E)-isomer Sa. Therefore,
the cycloaddition reaction with (Z)-isomer 5b would go
through zwitterionic intermediate 17a, for example, as a
result of a 1,6-addition type reaction. Rotation about the
C—C bond gives more stable, less sterically crowded 18a,
resulting in the formation of bicyclolactone 16a. Retro-1,
6-addition of 18a would account for the generation
of (E)-f-silyl styrene 5a in the reaction mixture. The
(E)-p-silyl styrene 5a was later prepared more conve-
niently from bromide 19 via the Suzuki coupling reac-
tion with trifluoroborate 20.°
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Scheme 3. Preparation and Cycloaddition of 5-Silyl Styrene 5
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Bicyclolactone 16a was treated with excess Zn to remove
the bromine atoms prior to the lactone opening with
NaOMe, which gave the desired ester 22 along with a small
amount of an inseparable double bond migrated a.f3-
unsaturated ester (Scheme 4). Maintaining the reaction
temperature to not exceed 0 °C is necessary to suppress the
double bond isomerization. Dihydroxylation with OsOy,
provided triol 10 in 81% yield from lactone 21 over two
steps.'® Subsequent Peterson elimination of this A-hydro-
xysilane afforded olefin 9 which was treated with VO(acac),/
TBHP'' to give epoxide 23. A sodium hydrogen sulfate
mediated hydrolysis of the epoxide'? and ester hydrolysis
provided acid 8 in 67% yield over two steps from 23. The
Curtius rearrangement of the resultant acid followed by
treatment with NaOMe gave carbamate 24 in 86% overall
yield. The remaining steps to the final pancratistatin
including protection of the hydroxyl groups, formation
of the lactam B ring, and global removal of the protecting
groups were achieved by using the conditions developed by
Magnus et al.*® The Bischler—Napieralski reaction on 24
under Banwell’s modified conditions,*"!? conducted after
the peracetylation, provided lactam as a mixture of 25a and
inseparable regioisomer 25b (7:1) in a combined yield of
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122, 6624.
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Hockless, D. C. R.; Holman, J. W.; Read, R. W.; Wu, A. W. J. Chem.
Soc., Chem. Commun. 1995, 2551.
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60% over two steps from 24. They became readily separ-
able later as only the desired regioisomer 25a underwent
BBrs;-mediated demethylation reaction. Finally, the acetyl
groups were removed to furnish (£)-pancratistatin 1.

Scheme 4. End Game Synthesis of (£)-Pancratistatin
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25a + regioisomer 25b (7:1) 1: pancratistatin

In summary, a new synthetic route to (£)-pancratistatin
was devised utilizing f-silyl styrene as a dienophile in the
cycloaddition with 3,5-dibromo-2-pyrone. The TMS
group incorporated in the cycloadduct permitted a facile
elimination process for the eventual installation of the
C(1)—OH function. Subsequent transformations includ-
ing Curtius rearrangement and Bischler—Napieralski re-
actions completed the total synthesis of (+)-pancratistatin.
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